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It is shown in agreement with earlier~conducted ztudies
[3, &, 5] that the plasma layer equilibrium with a megnetic field
containing a type~X neutral point is ustable. It is found that
the Syrovatskiy's conclusion [9] ** on stability is erronecus on
account of incorrect formulation of the problem and unacceptable

assumptions,

COVER-TO~COVER TRANSLATION

Two viewpoints on flare generation are possible: The Ffirst
consists in considering flares as occurring spontaneously, sg &
result of free field instability, frozen-in the solar plssms. The
second views them as appearing as a result of action of ocuter
fiedls (sumspot fields), compressing the plasma, The first possie-
bility wes considered by us — rather qualitatively — in [17, the
second — more guantitatively = in [2]. It is not yet possible to

state which of these two viewpoints is nearer the reality.
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O neustoychivosti sloya plazmy s neytral'noy tochkoy flagnitnoro
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Following [1], we shall consider the symmetrical confi-
guration of plasma equilibrium with the frozen-in field contai=-
ning a type X neutral point (see
Fig.l). The behavior of th 1lines
of force is not dependent on z.
The equation div H =0 is satis-
fied by the vector-potenial (0, O, A)
provided the field H is represented

as

H=arot (g, V), (1)

where ¥= 2z, A = ®, a is a constant (see [3]). Further, the
density of the current

=Tt H = 20,0, - vea), @)

and the equilibrium condition (rot [j,H] = 0) by the strength of
symmetry configuration (j,V) H = O will be

(HVj;) =.0, ‘ @)

and inasmuch as A = const along the line of force, we shall have

according to (2)

V4 = F (4), s B (4)
where F is an arbitrary function of A, The solution of this ecua--
tion

A = Y02 Fbrysh Yqcy®
gHy = bz +cy, Hy = — (az'+ b'y). Thus, for example, the field dis-

tribution along the axis x will be

H o 7 )
which is admitted in [1] for the representation of the field near
the neutral point., Let us note that for the considered configura-
tion H = &0 for x —»00 and the equilibriun would recguire here

an infinite density of current at the neutral point.
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The considered configuration of field ecquilibrium is

unstable (see the demonstration of it in ref [3, 4] ): its lines

9

N
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of force are not interlocked (in any plane passing through
axis 2z, the number of "incoming'-and "outgoing'" lines of force

is the same). The configuration does not satisfy the principle

of line of force minimum length, along which HZ /8% = const and
approaches the state when ‘the lines of force take the shape repre-

sented in Tig., 2. Plasma behavior near

S

the neutral point o' such type of con-

figuration is gualitatively considered ! )

in [11, neglecting the curvature of the
lines of force, and with the simplifying
admission that the similitude is preser-
ved at the beginning of compression, i.e.

the distribution (5) is preserved. The Fig. 2

N

A

same problem is considered more meticulously in [3] (para
with the same qualitative results. Finally in [5] it is shown
that plasma hydrostatic equilibriuﬁ is unstable in the presence
of a neutral point if gas pressure is lower than a certain value
(c¢f., with the instability index

nxT

B =H——2/SN 1,

obtained in [1).

Let us now examine the question of equilibrium stability
of a plane~-parallel plasma layer situated between the planes

X = =X, and X = + X5, Wwith a type (5) field distribution or

E (0, HO-E—, 0) (the plane x= O is neutral), considering that
inside th;Qiayer density and pressure are symmetrical functions
of x, and outside the layer (vacuum), they are neglected. Such
model of the state of plasma near the neutral po int has been
accepted by us in [1] and [2]. Let us now examine the stability

of such a state relative to small perturbations. We shall consider




first of all for the qualitative approach the conductivity & = o9,
and we shall neglect the shift current, considering the lines of

force as straight and parallel at motion,

For such a case we have the following (Eiler) ecuations

for small motions :

%+ div pev = 0; (6.1)

) , | HH i
poa—f=-—V(p+ ) (6.2)
ag =rot [v' X H,l, (6.3)

where zero refers to egquilibrium, and the stroke — to perturba-

tions ¥, Considering the movement as adiabatic, and introducing
2s

the displacement (shifting) s, so that v =Ty e shall obtain
¢
b= o ity PR B T = ot s, i) ™
oS, P Po .PO’ ’ 0

and the perturbation of the full pressure will be

—p+————(»ro+ )35 | ®)

if we consider that shiftings take place only azlong the axis x
and depend only on x (s = ¥).Introducing $§ and (8) into (6.2),
and multiplying it by g and integrating from O to x,, we shall

obtain
Xo

m2,3§090§§ =[(vpo+ 2= 4,,)§1a§‘] g(’l’Po—f‘ )(ﬁ‘) dz, (9

0

having admitted the displacement ; == glvewt.

~

Tor the investigation of instability by the sign w‘, i

g d

is necessary to formulate the boundary conditions, particularly

at the outer boundary of the plasma, where f = 0 and p =0,

If the lines of force are being distorted, the term with H
(6.2) must be replaced by

IJ
]

= [rot B/, Ho] + L lioH),

where 30 is the current aencltv in egqguilibrium.




It is easy to see (¢f [6]) that the requirement of current impulse
"continuity in our case amounts to conditions :

where the brace indicates the jump, and t dis the tangentisl com-
ponent. The requirement of current energy continuity is reduced

to the condition .{vtg= 0 by the strengt‘;h of (10) and ®f the con-
dition {Hn} = 0 (n being the normal), i.e.,o0f velocity continuity.
At the same time the condition ’{Et} = 0 is identically satisfied.
Passing from the displaced boundary, when (10) are fulfilled, to

non-displaced X = X we shall have with the precision to the

ok
small cuantities of the first order

Poi

Ty 0H ’ oH,
_0; 'H’l+§ ain:He_l_g

at rz=u1x, (11)

where indices 1 and e refer to the plasma and its surroundings
»

=0, H . =Hoe). According to (7), the first

(for x = x .
o Sad. oi

condition gives the identity 0 = 0O ( Po= 0), and the second —
08 OH,,
Ho,——_.—-(H ). 12)
If the conditions of the problem admit the representation He= Hie®,
then, considering ,§=- 0 at x = 0, we obtain for the expression (9):
Xo Xo ag
: 5025 Poki ——'—(H1e+ am Em) &0 — S (Tpo‘l' lm:)( 1) dz, (%3)
0 0
where gl is the amplitude at the boundary. If H' =0 (t sur-

rounding field does not vary with time), then for tnc stability

it is sufficient that the exterior field HOe increase with the

departure from.the layer. As to the instability it may appear if
. . 0H
Hoe decreases as it moves out of the plasma, i.e.,if a;’e ==0.

These signs are si:milar to those found in (7). If the surrounding

field is uniform(a};’ _0) but the quantity H‘e# 0O, then
—

We is determined by the growth or decrease of the outer

02 =

nmsl -~




field (or the sign of H'%): for practically interesting cases

(spot field variations) in the course of field szrowth

50 il
(Hle> 0) and compression (§l<0') progresses with time (a)?')O).
provided the field growth is sufficiently strong (the right-hand
part of (13) is positive. This case of field's He increase, having
exterior sources — the spots, is examined in [2].
Let us now deny ourselves the admissions 6=m,—%-%—= 0

and (HV) H = O (the lines of force are parrelel lines) and let us
consider the equilibrium stability of plasma layer with the
distribution, vpressure and density (inside)

2
H,=H,—, P=Po(1—z—)oP—Po (1——22—), (14)

Zo 0 0

estimating Hy = const = I—IO beyond the plasma (this case practi-
cally coincides with the one considered in [2]. ILet us consider
that there is in equilibrium a current Jq (0, O, jg) and a field
E, (0, 0y Eg)e Let us estimate that all the perturbations have a

common multiplier )
e 1kzwl, ' (15)

while their amplitudes depend on x. In observing the equilibrium
the constants Hp, Py and PO will be, according to (14) linked with

the conditions

; ; 1. . 7
Ey= L;_ ’ Ho = —Jo%o JoHozpr'—_- 2p,. (16)

The problem of small oscillations in this case is conside-

red in [3] (with the condition Re [w] > 0) at correct boundary

conditions By =Eyer Ezi —-Eze arfd
2 . H,
-Pn'—ﬁﬁ 0, H1ue+,,—;;,”1=H1ui ! (17)
(the last two are (l]) and (12), It was shown in (8) that for the
determination of stability at limit case O = &0, furdamental numbers

of the equation - "
75 2 + 2mp 7 = % (B + wR-'T) ¢ (18)

must be found with boundary conditions

Lo

‘ 2 =
=0, 9=0; z= xo,‘(P-l-—lﬁ— 7= 0, (19)




where it is marked :

p = R1— 207, R:'1'+.§f_ﬁ, .T=1+2a"’—22, et P8
r x, .

3 0 IC
14
2 __iPo . @?\7s
= s (B O e

3

through the function ¥, In order to better visualize the beh

of the numbers 4in limit cases, we transform this problém *t

variables, Introducing

(1_*__1& /4
=m% v t=(5)" @)

we obtain in place of (18), (19), the problem :

d d . : | ‘
i (sag) — pr— wiad = 0, 22)

z=0 at §=O;-z',+[fzi7v’+a]'z=0 M E =1, (23)

where the following designations are introduced :
e 1 1 42af 1 272 a
s=2YEg= L A+:E . o 1 me g @)
Vg 9 2V§ 1+%—§ p 2V§(0 ))
¢ 9 NN o 4‘1—'1’ o
DE) =+ +VE; ¢ =5rrnarmm

The amplitude of all perturbations are then expresse

0

P, ol 1 +2G 2 ﬁ_.)'/l
x_,—za—(lc E - e (24)
Multiplying (22) by 2z and integrating along § from
we shall obtain by the strength of boundary conditions (23) :
1 1
022 + S p22dE = — (2a + z\) 22— S sz'dE, (25)
. & ™ o
1
if we adopt the normalization Siqfd§==1- Let us designate
0

1

1 1
A2 ? 28dE -  Dz2? ' L
i \ave =5 Szy;"ﬁ +-§ 8 + 205 = & (26)

0 850
then i
uﬂ==§F(A2—me

to

Lo



and instead of the equation for w2 we shall obtain th
equation for AZ:

____“1(“"2“) A+ B @rB — 1) +24=o. A (97)

0

A+

The solution of, this equation is

B 0+2e) | [redfap | ‘(,\ A)"'-
a=_nC ;t[ e G | R

The quantity : is of the order of the sguare of the
speed of sound in the plasma ratio to the speed of light, quantity

very small (o< 10'8), and that is why we have with great p:

A i Tzi Tﬁzl 3 s
A__—Z;;j:[ s+ & (29)
(the quantities A, B, and z7 are of the order of the unity
the adopted normalization). Therefore, /\is always real

L © Cll

A2 <k2 we shall have stability, and for A2 > %2 — instabi

For k = O, case of strictly longitudinal compressions — pI
2 2
waves, see above, we have Ay =0 “’_2>0 Ay= o T 2
c2 y z—zo , A2 —
i. e, the instability (at corresponding boundary canui..ons
When k % 0 (narrowing 2long the axis 2z) we have from the expre

sions for 2 (26) and (29) :
. ¢ .
0} = (743: )2 {1—[1 +k2(‘””°) ] }
20 I s
acs@ el @ T o
1

1. €. there is also instability for any velue of k., Therefore,

o

a plane-parallel plasma layer, containing a neutral point of the
considered type (with distribution of the type (4) ) is unstable.
Let us note that for the estimate in [8] of the effect of finite

onductivity on oscillations, the solution for (»1 was

adopted.




For the solar plasma, when the characteristic dimensions of X4

is comparable with ¢, the guantities &) will be ﬂv'z%_ (~1 at

selected normélization). The charactristic times of a ravid flare

development are of the order of several seconds.

Therefore, if one considers a flare as a result of insta-
bility of the considered layer, it is obvious that the stable (or
rather stationary, to be more precise) state prior to the flare
ought to be already characterized by ancther distribution of den-
sity and field (for example, by field growth at lx| >:g:),and
the flare itself should by the same token be viewed as 2 result
of field re-distribution on account of hydromagnetic movements
(in case of a free field) or of variation of spot position (or

spot field intensity) in case of an outer field.

It may be seen from (29) that had we utilized an incorrect
boundary condition z; =0, we would have obtained from (28)
A2~ k* — ay xi, i.e. ©® <0, and would have dravn a conclusion of
stability, as this was done in [9]. The same prudence must be exer-
cized at transition of X, => 09, for the solution z (§) includes
X, as parameter (see (24) ) and without investigating the conver-
gence of integrals A and B at Xy =» 09 , nothing can be said
about the numbers wa.(}enerally spegking, as is well known, the
character of eigen~-values for a problem with a finite boundary
may radicelly differ from the same for an infinite boundary,
It may be seen from (9), that at field distribution (5) the voint
X =opois a peculiar point of the equation and the integrals in (9)
have sense if §l does not decrease more slowly than 1/“V6? at
X ~»0o0, This is linked with the fact that at x = po we have to do
with the configuration of an infinitely great potential energy

g;dx diverges at field distribution (5)) , where the problem

of minimum energy itself (i.e., of stability) loses its sen

)]

e

without special reservations.




10.

That is why it is senseless, for example, to spezk of
equilibrium stability of a boundless nonuniform medium in the
general, without stating what field and plasma density distribu-
tions are realized in equilibrium near the neutral point, af,
obviously, we do not have in mind the well-known problem of magne-
to-acoustic waves considered in [9]. By the way, let us note that
inasmuch as for solar flares (v/VT)EEQ;‘~1102 (v being the chara-
cteristic plasma velocity, Von
ing of the inertial term in the equation of motion made in [9]

~ the thermal velocity), the neglect-

is unacceptable. Neither is justified the assertion in [9] of the
impossibility of self-modeled compression, for the total volume

elasticity is

2 1
Yt m=tm—gZ)

quantity practically invariable inside the layer in eocuilibrium
(po is the pressure at the neutral point, P/posg I,y=5/3),
so that the compression is nearly everywhere uniform (if it is

strictly avross the field).
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